Leucine pools in normal and dystrophic chicken skeletal muscle cells in culture.
نویسندگان
چکیده
The specific radioactivity of [3H]Leu in the extracellular, intracellular, and Leu-tRNA pools of normal (white leghorn) and dystrophic (line 307) embryonic chick breast muscle cultures was analyzed as a function of equilibration time and extracellular Leu concentration (0.05-5 mM). The primary results were the following 1) [3H]Leu equilibrated to a constant specific radioactivity in the intracellular and Leu-tRNA pools within 2 min after addition to both normal and dystrophic cultures. 2) After equilibration, the extracellular [3H] Leu specific radioactivity in dystrophic cell culture medium was lower than that of medium exposed to normal cells (especially at low Leu concentrations), probably because of increased release of unlabeled Leu from the dystrophic cells as a result of faster protein breakdown. Accordingly, the specific radioactivities in the intracellular and the Leu-tRNA pools were also lower in dystrophic cells. 3) At 5 mM extracellular Leu, the specific radioactivity in the Leu-tRNA pool was approximately 40% lower than the specific radioactivity in the intracellular pool in both normal and dystrophic cells. Thus, high concentrations of extracellular Leu cannot be used to "flood out" reutilization of unlabeled Leu (released by protein degradation) during protein synthesis. 4) At 5.0 mM extracellular Leu, the specific radioactivity of [3H]Leu in the intracellular pool was comparable to that in the extracellular pool in normal and dystrophic cells; however, the specific radioactivity of Leu-tRNA (i.e. the immediate precursor to protein synthesis) was only 55-65% of the extracellular specific radioactivity in normal and dystrophic cells. In conclusion, reutilization of Leu from protein degradation is higher in dystrophic muscle cell cultures than in normal muscle cell cultures, and accurate rates of protein synthesis in cell cultures can only be obtained if specific radioactivity of amino acid in tRNA is measured.
منابع مشابه
Isolation and optimization of mice skeletal muscle satellite cells using preplating method and culture media substitution
Introduction: Satellite cells are known as the main regenerative cell type in skeletal muscles. Our study established a modified digestion and preplating method for the isolation of slow or weak adherent cells for the enrichment of satellite cells. Low-survival rate of these primary stem cells prompted us to address whether cell culture medium substitution might change cell viability status. M...
متن کاملRegulation of fructose diphosphate aldolase concentrations in skeletal muscles of normal and dystrophic chickens.
We are using the glycolytic enzyme aldolase as a marker to investigate the molecular basis for reduced levels of specific enzyme activities associated with muscular dystrophy. Inbred strains of normal and dystrophic chickens were used as models to study the disease. In the present paper we show that: 1) aldolase & was the only isoenzyme present in normal and dystrophic muscles derived from lto ...
متن کاملIncreased turnover of proteins from the sarcoplasmic reticulum of dystrophic chicken muscle cells in tissue culture.
Chicken myoblasts were cultured from the pectoralis muscles of dystrophic and normal 11-day-old embryos. Cells were allowed to grow to fusion (differentiation) and exposed to [35S]methionine for a short period. Subsequently, the decay of labeled proteins in the presence of cycloheximide was measured for various cellular fractions as well as individual proteins isolated from the sarcoplasmic ret...
متن کاملSynaptogenesis in cell cultures of neurones and myotubes from chickens with muscular dystrophy.
Intracellular microelectrode recordings from chick dystrophic myotubes in cell culture reveal a capability for innervation by neurones from either dystrophic or normal embryos. Neither neuronal class differentially affects the incidence of synapse formation at neuromuscular junctions (about 75%) or at neural junctions (about 85%), the PSP frequency (about 10/sec), the maximum quantal content at...
متن کاملSkeletal muscle protein and amino acid metabolism in hereditary mouse muscular dystrophy. Accelerated protein turnover and increased alanine and glutamine formation and release.
Interactins between skeletal muscle protein and amino acid metabolism were investigated using C57BL and 129ReJ mice with hereditary muscular dystrophy. On incubation, hind limb muscle preparations from dystrophic mice released large quantities of amino acids, particularly alanine and glutamine which were increased 70% and 40% compared to muscles from carrier or control mice. The increased alani...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 259 3 شماره
صفحات -
تاریخ انتشار 1984